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Large amplitude surface waves 
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(Received 4 January 1977) 

A transformation technique is used to solve the problem of steady nonlinear surface 
waves where the restoring force is either gravity or surface tension. An exact non- 
linear integro-differential equation is found which yields known approximate solu- 
tions. Extensions to the method to account for more complicated geometries are also 
illustrated. The equation is solved numerically and results in agreement with previous 
solutions are obtained. In  the case of capillary waves, the existence of two types of 
wave of greatest height is clearly indicated. 

1. Introduction 
The problem of steady nonlinear two-dimensional waves has been studied exten- 

sively. An approximate solution for the case of gravity waves was obtained by Stokes 
(1847), and Michell (1893) investigated the wave of greatest height. Later, Nekrasov 
(1921) used a transformation to reduce the problem of gravity waves on a fluid of 
infinite depth to the solution of a nonlinear integral equation. This was solved numeri- 
cally by Thomas (1968, 1975) and in fact an account of his method of solution and the 
nonlinear theory is given by Milne-Thomson (1968, p. 409). Also, reviews have been 
given by Wehausen & Laitone (1960) and Wehausen (1965). John (1953) solved the 
problem of a nonlinear wave on water of finite depth. However, the bottom surface was 
wavy but for sufficiently deep liquid, the amplitudeof the bottom surface was negligible. 
A method used by Long (1956) was extended by Byatt-Smith (1969) to obtain an exact 
integral equation for the elevation of the free surface. This was used to derive known 
approximate solutions and to investigate solitary waves. More recently Schwartz 
( 1974) extended Stokes' infinitesimal-wave expansion, using a computer to evaluate 
the coefficients. However, the expansion parameter used by Stokes limited the radius of 
convergence of the series to the extent that the highest wave was unobtainable. The 
domain of validity was extended through the use of Pad6 approximants and estimates 
of the highest wave were obtained. A similar method, using Pad6 approximants to 
extend the range of convergence, was employed by Longuet-Higgins ( 1975) to examine 
the behaviour of large amplitude waves in deep water. These computations suggested 
that the speed of the waves was greatest when the wave height was just less than the 
maximum. This work has been extended by Cokelet (1977) to account for waves in 
water of finite depth. The work discussed so far has been concerned with gravity waves. 

For the case of capillary waves on water of infinite depth, an exact solution has been 
found by Crapper (1957). He used the velocity potential and stream function as inde- 
pendent variables and solved the resulting equations of motion for the Cartesian co- 
ordinates x and y of the free surface. Very recently, Kinnersley (1976), following 
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Crapper’s method, has obtained exact solutions for capillary waves on sheets of water 
of finite thickness. 

In  this paper, a transformation method is used to solve the probIem of steady non- 
linear waves where the restoring force is either gravity or surface tension. A transfor- 
mation is found which maps the region occupied by the fluid into a half-plane. An exact 
nonlinear integro-differential equation is then obtained for the slope of the free surface. 
Although, for the present, attention is confined to the case of periodic waves over a flat 
bottom, the mapping could be modified so that neither of these restrictions need be 
imposed. However, the resulting difficulties would be beyond the scope of the present 
paper. 

The integro-differential equation is expanded in terms of the amplitude and solved 
to give known results such as the linear theory and Stokes solution. For the case of pure 
capillary waves Crapper’s exact solution is expanded in the appropriate manner and is 
shown to agree with the approximate solution obtained from the present theory. For 
more general cases a truncated Fourier series is used to represent the slope of the free 
surface. The coefficients in the series are determined by substituting the expression into 
the integro-differential equation a t  certain points and solving numerically the resulting 
set of nonlinear algebraic equations. 

For the case of gravity waves, the results are in agreement with solutions previously 
obtained. Although the solitary wave cannot be dealt with directly by the present 
method, the way in which the solution approaches this particular wave is examined in 
the results. In  dealing with capillary waves on a liquid of finite depth, the results 
indicate two types of limiting form of the wave of largest amplitude for a given mean 
depth. The relevance of this phenomenon in the breakup of thin films is mentioned. 

2. The wave problem 
The problem considered is that of steady two-dimensional waves on the free surface 

of a liquid flowing over a flat horizontal bottom. A co-ordinate system is chosen in 
which the wave is stationary, the x axis is horizontal and the y axis points vertically 
upwards. 

Assuming that the flow may be regarded as inviscid and irrotational, the problem is 
reduced to finding a complex potential satisfying the appropriate boundary conditions. 
This can most conveniently be done by mapping the region occupied by the fluid into a 
somewhat simpler region, the lower half of the [plane say. The boundary of the z plane, 
which is inclined at an angle a to the real axis, is mapped into the real axis of the [plane 
by the transformation1 

since dz/d[ is an analytic function whose natural logarithm has a as its imaginary part 
on the real axis. Furthermore, by making the origin in the [ plane correspond to - co 
in the z plane and the - 5 axis (g = 5 + ir) correspond to a flat bottom in the physical 
plane, as shown in figure 1, this transformation may be simplified to give 
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FIGURE 1. The correspondence between the z plane and the 5 plane under the transformation (3). 

The velocity components in the x and y directions respectively are u and v. Since 
u - iv is a function analytic in the lower half of the 5 plane with - a as the imaginary 
part of its natural logarithm on the boundary, 

Here Q represents the flux of fluid in the + x direction in the z plane, since the complex 
potential in the [plane is that associated with a line source of strength &In situated a t  
the origin. 

The condition to be satisfied a t  the free surface is simply Bernoulli’s equation. Allow- 
ing for the effects of both gravity and surface tension, this is 

$p(u2 + v2) +pgys - T cos adaldx = constant (4) 

if the pressure over the surface is taken as uniform. The quantities p, g and T denote 
density, acceleration due to gravity and the surface-tension coeficient respectively. 
The terms involving a represent the curvature of the free surface. In  general, the con- 
stant on the right-hand side of (4) will depend on the mass transport induced in the 
fluid by the waves and therefore it is found more convenient to use the derivative with 
respect to In E of this equation. 

From (3), at the free surface the fluid speed is given by 

where P I  denotes the principal value of the integral. Using this, and the derivative of 
(4), the free-surface condition becomes a nonlinear integro-differential equation for a, 
namely 

T (dadP d8a) = o, +gCe3Psina+-ep - --- 
n2C2 dr pC dr dr dr2 

Q2 dP --- 
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where 

P = PIrni*dt, ner-t  r = In<. 

This is an exact formulation of a free-surface problem for flow over a flat horizontal 
bottom. By referring to (1)) it can be readily appreciated that the modifications to  ( 5 )  
arising from a change in the geometry are easily made. However, discussion in this 
paper is concerned only with steady periodic waves. These are obtained when a([) is 
a periodic function of In 6 and under these circumstances the integral in the transfor- 
mation converges only in the sense of a generalized function. 

3. Approximate solutions 

are neglected, the equation reduces to 
A solution to ( 5 )  may be obtained when 01 is small. If terms involving products in a 

T d2a 
n2C2 dr pC dr2 

+gCa--- = 0. 
Q2 dP --- 

Since 
cos kr &=-- O0 1 sin (klnt) 

n er-t tanh kn' 

it is easily seen that the solution of ( 6 )  is 

where 
a = asin kr, 

Tk2 
+gc!+- = 0 - Q2k 

n2C2 tanh kn PC 

(7)  

and a is an arbitrary small constant. Using (2) with this form of a and making approxi- 
mations consistent with those already made, it can be shown that 

ys = ( - Calk) cos kr, xs = Cr 

to within arbitrary additive constants. The mean depth of the fluid is Cn ( =  h say). 
Hence 

and using (8) gives 
ys = ( - a/K)  cos Kxs, 

U2 = -+- K tanhKh, (: p' 1 
where K = klC is the wavenumber and Q = Uh. Since the mass transport induced by 
the waves is negligible to this order of approximation, the mean stream speed U is the 
phase speed of the waves. So it is seen that the familiar linear wave solution is recovered 
from this analysis. 

Higher-order solutions of ( 5 )  could be obtained by expanding the equation in powers 
of a. However, the nonlinear terms in 01 generate higher harmonics and it will be 
demonstrated that ( 5 )  can be solved more simply using an expansion for a which 
involves the higher harmonics and is in terms of a small parameter related to the 
amplitude of the wave. The order of magnitude of the coefficient of a harmonic in this 
expansion decreases as the order of the harmonic increases. 
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For the moment, discussion is restricted to the case of gravity waves, so that the free- 
surface condition (5) becomes . ,  

+gCeSps ina  = 0. 
Q2 dP 

n2C2 dr ( 9 )  

Stokes’ (1847) solution for the case of waves on water of infinite depth can be obtained 
by taking the first three terms in an expansion for a, i.e. 

a = a sin kr + $a2 sin 2kr + ya3 sin 3kr, (10)  

where a is a small parameter, in fact proportional to the amplitude of the waves. The 
constants /3 and y are independent of a and may be regarded as being of order unity. 

The expression (10)  for a allows the value of P to be deduced from ( 7 ) .  However, the 
case of fluid of infinite depth is obtained by allowing k -+ co and hence tanh kn = 1. The 
algebra is simplified if this approximation is made at  this early stage, so that P is 
being given by 

P = - a cos kr - $a2 cos 2kr - ya3 cos 3kr. 

Substituting in ( 9 )  for a and P and neglecting terms O(a4), it can be shown that 

Q2k/n2C3g = 1 + a2, $ = - 8, y = J-r. 6 ( 1 1 )  

By using these results for a in the transformation ( 2 ) ,  an equation for the free surface is 
determined in terms of the parameter r :  

and 

After some algebra to eliminate r ,  the equation for the free surface becomes 

y = C[(a + 4a3) sin kr - 2a2 sin 2kr + %a3 sin 3krl. 

y = - A  COB K X  + +KA2 cos ~ K x  - QK2A3 cos ~ K x  + gKA2, 

where K = k/C is the wavenumber and 

A = ( C / k ) ( ~ + 9 ~ ) .  (12)  

To determine the phase speed, it is observed that, if the complex potential w is 
expressed in the form w = Q, + i@, then the change in Q, over a wavelength is UA,  where 
U is the phase speed of the waves and h is the wavelength. On the flat bottom, for the 
case of liquid of finite depth, or at depths large compared with a wavelength, for 
infinite depth, the velocity component v is zero, so that u = dw/dz. Hence U is given 

where D is a ‘sufficiently large depth’, since the change in In 5 over a wavelength is 
2n/k. 

The condition expressed by (1 l ) ,  using (12)  and (13) ,  becomes 

U2K/g = 1 + A 2 .  

These results are in agreement with the expressions obtained by Stokes (see, for 
example, Kinsman 1965, p. 251). 
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The case of nonlinear capillary waves is now considered. The surface condition (5) for 
this situation becomes 

(14) 

As before, an approximate solution can be found with a expressed by (10). The restric- 
tion to infinite depth is again imposed in order that comparisons may be made with the 
exact solution obtained by Crapper (1957). 

Using (14) and following the procedure adopted for the case of gravity waves, the 
coefficients in the expansion for a can be found together with a condition on the phase 
speed of the waves: 

and 

+ - - P  _-_- = o ,  ("" d2a) 

Q 2  dP T --- 
n2C2 dr pC dr dr dr2 

B = O ,  y = &  

n2CkT/Qa = 1 + +a2. (15) 

Using these results and (2), the form of the free surface can be found in terms of the 
parameter r :  as 

and 

Ca Ca2 
k 4k 

xs = Cr--sinkr+-sin2kr I 
(a  coskr - &a2cos 2kr + &a3 cos 3kr) 

C ys= -- 
k 

to within arbitrary additive constants of integration. As before, the wavenumber 
K = k/C.  Rather than eliminating r,  it  is convenient to compare the solution with 
Crapper's results in this form. 

The exact solution for the form of the free surface in terms of a parameter s is given 

where A is the amplitude of the wave and A is the wavelength. For small values of A 
this becomes 

- 2n-x = 2n-s-- nAs in2ns+z(x )  1 nA sin4n-s ..., 
A h 

1 nA 1 mA 3 
cos2ns+-( ) cos4ns-- ( ) cos6ns ... . %' = - F--L 

A A 16 h 4 A  16 

Clearly these are the same as expressions (1 6) to the required order if we put 277s = kr 
and nA/A - & ( ~ T A / A ) ~  = a. The phase speed U is determined from (15) by using (13), 
and is given by 

1 n-A u2 = TK P E1-s (x)2] +O(A4). 

This agrees with the exact result 
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4. Numerical solution 

Fourier series, i.e. 
To find a numerical solution of (9) or (14), a is expressed in the form of a truncated 

N 

n = l  
a = a, sin nkr. 

To determine the N unknown coefficients a,, u2, . . . , aN this expression for a is made to 
satisfy (9) or (14) at N interior points, for example kr = in/ (N + l), where i = 1,2, ~.., 
N .  Clearly the end points are satisfied by the form chosen for a. As a result of this 
substitution, N simultaneous nonlinear algebraic equations are obtained for the 
unknown an’s. 

For the case of gravity waves, a parameter p = Q2k/n2gC3 is introduced and clearly 
p = 1 for infinitesimal waves on water of infinite depth. By a minimization technique 
the algebraic equations resulting from (9) are solved numerically for various values of 
the parameters p and k .  The numerical iterative procedure can be started by using the 
previously obtained third-order solution as a first guess when p is close to unity, For 
other values of p at a fixed value of k the initial guesses are obtained from previous 
solutions. 

The problem of capillary waves is dealt with in a similar manner except that the 
relevant parameter is v = Q2p/n2CkT, with v = 1 again corresponding to infinitesimal 
waves on deep water. 

With the values of the an’s known, (2) can be integrated to give the shape of the wave 
and thus the wavelength. From (13) the phase speed of the waves can be found. For the 
case of gravity waves U is given by 

while for capillary waves the relationship is 

If 6 = eie is substituted into the transformation (2), the depth d of water below a 
wave trough can be found by integrating the equation over - n < 0 < 0. That is, 

0 cosh k(n + 8) 
d = exp(-Ca, n sin h kn 

-71 

where the terms under the summation have been obtained by evaluating the integral 
exponent in (2) around a suitably deformed contour. Hence, since the wave form has 
been determined, the mean depth h of water can be found after evaluating the integral 
in (17). 

5. Results 
Concentrating first of all on the case of gravity waves, the value of N was initially 

chosen to be 10. The values of kr substituted in (9) to obtain the nonlinear algebraic 
equations were equally spaced in the interval [ 0, n]. 
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F I Q ~ E  2. The wave forms for various values of h/h and A/h, showing the approach to a solitary 
wave. Note that the free surface is approximately flat from x = 0 up to the first value of x shown 
in (b)-(d).  (a) h/h = 0.57, A/h = 0.187. ( b )  h/h = 4.6 x lo-*, A / h =  2.87 x lo-'. (c) h/h = 2 x lo-', 
A/h = 1.36 x lo-*. (d) h/h = 5.1 x 

Y 

A/A = 3-14 x lo-'. 
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In  figure 2, the wave forms for various values of the parameters are shown. Figure 
2 (a) shows the typical shape of a nonlinear gravity wave on water of moderate depth, 
i.e. a sharpened crest and flattened trough. As the values of Alh and hlh are reduced the 
flat trough is seen to extend over a still larger region and the wave speed relative to 
that of an infinitesimal long wave increases. This tendency is illustrated in figures 
2 (b)-(d). In  figure 2 (d) ,  where hlh has been reduced to 5 x while Alh is very close 
to the maximum permissible value, the trough is quite flat for over 80 yo of the wave- 
length and a solitary wave is approached. 

In  the numerical results, there were slight wobbles, of amplitude less than 1 yo of the 
wave amplitude, which arose from the inaccuracies implicit in the numerical scheme. 
Since the derivative of the Bernoulli free-surface condition is used in the solution of the 
algebraic equations, it is possible to carry out a direct check on the accuracy of the 
results. By substituting the computed values of the wave height and fluid speed into 
Bernoulli's equation applied a t  the free surface, the errors in the solutions can be 
estimated. 

With the ten terms taken, and for waves near their maximum amplitude, the errors 
in some cases were almost 10 %. By increasing the value of N to 20 but keeping the 
points a t  which (9) was satisfied equally spaced, this error was reduced to less than 3 yo. 
However, the computing time required to obtain convergence to a solution of the 
required accuracy increased by a factor of three. This could no doubt be improved by 
choosing the N points a t  which (9) is satisfied more carefully, paying particular atten- 
tion to regions of rapid variation. For the present results this was not done as the desired 
accuracy was achieved for very small expenditure in computing time. 

In  figure 3 the variation of the wave speed with amplitude is shown. The maximum 
value of Alh is taken from Wehausen & Laitone. In  terms of the present analysis, the 
wave of greatest height for a given ,u would be reached when the value of k was just 
small enough to make to the principal value P tend to - co. This can be thought of as 
the minimum value of k for which the series 

Oo ( -  1)" 
I: an tanhnkn 

converges [see (7)]. Since the series is truncated in the present calculations, the wave of 
maximum height cannot be determined. A similar condition arose in the Schwartz 
analysis and use of a Domb-Sykes plot allowed the maximum value of the amplitude 
to be estimated. This approach is inappropriate in the present analysis because no 
formal expansion procedure is used, rather the surface condition is satisfied at discrete 

Comparisons with the direct numerical calculations of Chappelear were made and 
showed excellent agreement. This makes the present method particularly useful in the 
region where the higher-order Stokes solutions are known to be in error, i.e. as hlh 
decreases, so that U2/gh becomes greater than unity. However, the calculations of 
Schwartz, where the range of convergence of the Stokes solution was extended by the 
use of Pad6 approximants, were thought to predict the Froude number to an accuracy 
of I % for waves up to the highest and for hlh as smalI as 0.0570. A comparison of the 
present calculations with these results for hlh = 0.035 and alh in the range for which 
Schwartz's results are accurate is shown in figure 3 and it can be seen that extraordi- 
narily good agreement is obtained. The curve for the solitary wave, also taken from 

points. 
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FIGURE 3. The variation of wave speed with amplitude for gravity waves. ---, Stokes’ fifth- 
order solution, which for h/h = 0.2 is virtually identical to the present calculations; ., from 
Sohwartz’s solution for h/A = 0.0356. 
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FIGURE 4. The variation of wave speed with amplitude for capillary waves. , particular 
examples of Crapper’s exact solution for infinite depth. 
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FIGURE 5. Capillary wave profiles for various values of h/A.  (a) hlh = 0.6. 
(6) h/A = 0.3. (c) h/A + 03. 

Wehausen & Laitone, is shown toindicate how close to this limiting solution the present 
approach has been carried. No attempt has been made to perform the calculations to 
the accuracy required to corroborate the recent findings of Cokelet, with regard to the 
fastest-moving wave. However, such calculations should be possible even though the 
wave height will not be a monotonically increasing function of p, since p is not used as 
an expansion parameter. For a given value of p, there is no reason why, in principle, 
two physically realistic solutions to the set of algebraic equations cannot be found. 
However, in practice the effort involved in attaining the required accuracy would be 
enormous. 

Coming now to the case of capillary waves, figure 4 shows the variation of wave 
speed with amplitude for various values of h/h. Also shown in the figure is the exact 
result of Crapper, for waves on water of infinite depth, which is compared with the 
present calculations. As can be seen, the results are indistinguishable. The general 
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trend of increasing amplitude leading to decreasing wave speed is shown and also for a 
given wave speed the amplitude increases rapidly with the mean depth. 

The curve referring to the waves of maximum amplitude is obtained by calculating 
the wave which just touches its neighbour, enclosing a pocket of air. This curve cuts 
the Afh axis at about 0.5 and thus two distinct types of wave are represented in 
the figure. The curves h/h = constant which cut the maximum amplitude curve have 
their height restricted in the way already described. The wave represented by the 
curves h/A = constant which cut the A / h  axis are restricted in amplitude in an entirely 
different way. 

Figures 5(a)  and ( b )  illustrate this point. I n  figure 5(a),  hfh = 0.6 and the wave 
profiles a t  various speeds are shown, including the wave of maximum amplitude for 
this value of hfh. When hfh = 0.3, the wave profiles are as shown in figure 5 (b) ,  and the 
significant feature of these waves is the depth of liquid below the wave trough. This 
depth, made non-dimensional by the wavelength, is approximately 0.0003 for the 
largest wave shown and increases through the values 0.045 and 0.12 to 0.2 for the 
smallest wave. Evidently this type of wave is restricted in amplitude by the amount of 
liquid available and is clearly of importance in the symmetrical breakup of thin liquid 
films. 

These findings are in agreement with the results of Kinnersley (1976), who considered 
two distinct types of wave, the limiting form separating the two types having an 
elliptic profile. Figure 5 (c) shows the wave profiles for large values of hfA, which are of 
the form obtained by Crapper. 

6. Conclusions 
It has been shown that the method developed in this paper is capable of reproducing 

known approximate solutions to problems in nonlinear water waves. The method of 
solution of the exact equation for the free-surface slope a: is numerically simple and 
efficient with typical computing times of about 10 s on the 1906A at Leeds and, for 
both gravity waves and capillary waves, the results are in excellent agreement with 
previous calculations. Furthermore, in the case of capillary waves on water of finite 
depth a whole range of information is obtained and the two types of wave of greatest 
height examined. 

Previous work on developing an exact equation for nonlinear free-surface waves 
using a mapping technique, as originally carried out by Nekrasov, formulated aperiodic 
wave. With this constraint, a region between the bottom and the free surface and 
bounded by vertical planes a wavelength apart was mapped into a circular annulus, 
the mapping being given by an infinite series. Use of Levi-Civita’s (1925) surface 
conditions then allowed the exact equation for the free surface to be found. 

I n  the present method, the whole of the region occupied by the fluid is mapped into 
the lower half of the 5 plane, where a complex potential may be written down. Hence 
the solution for periodic waves is a particular case of a more general approach to non- 
linear frtmsurface problems. As indicated earlier, the method gives an exact equation 
for the free surface for flow over submerged obstacles and could even deal with par- 
tially immersed bodies on the surface. 
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